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Abstract. Suitable macroscopic quantities are identified and used to assess the field distribution
within a composite specimen of finite size with random microstructure. Composites made of N
anisotropic dielectric materials are considered. The characteristic length scale of the microstructure
relative to the length scale of the specimen is denoted by ε, and realizations of the random composite
microstructure are labeled by ω. Consider any cube C0 located inside the composite. The function
P ε(t, C0, ω) gives the proportion of C0 where the square of the electric field intensity exceeds t. The
analysis focuses on the case when 0 < ε � 1. Rigorous upper bounds on limε→0P ε(t, C0, ω) are
found. They are given in terms of the macrofield modulation functions. The macrofield modulation
functions capture the excursions of the local electric field fluctuations about the homogenized or
macroscopic electric field. Information on the regularity of the macrofield modulations translates into
bounds on limε→0P ε(t, C0, ω). Sufficient conditions are given in terms of the macrofield modulation
functions that guarantee polynomial and exponential decay of limε→0P ε(t, C0, ω) with respect to
“t.” For random microstructure with oscillation on a sufficiently small scale we demonstrate that a
pointwise bound on the macrofield modulation function provides a pointwise bound on the actual
electric field intensity. These results are applied to assess the distribution of extreme electric field
intensity for an L-shaped domain filled with a random laminar microstructure.
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1. Introduction. Failure of composite materials can often be attributed to the
presence of large local fields. This includes extreme temperature gradients and large
electric and current fields as well as mechanical stresses [9]. These fields are strongly
influenced by the local microgeometry inside the composite. It is often the case that
the microgeometry of heterogeneous specimens is known only in a statistical sense.
Motivated by these considerations, we examine the distribution of extreme field values
in random heterogeneous media. The focus here is to assess the likelihood that the
magnitude of the electric field inside the composite exceeds a prescribed nominal value
for almost every realization of the random microstructure.

Here we consider a random composite made up of N anisotropic dielectric materi-
als with dielectric tensors A1, A2, . . . , AN . To describe the dielectric tensor for a finite
size sample of random composite, we begin with the description of a random medium
of infinite extent. The dielectric tensor field A(y, ω) associated with the composite
is a function of both position y and geometric realization ω taken from the sample
space Ω. For each realization ω, the tensor field A(y, ω) is piecewise constant taking
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476 ROBERT LIPTON

only the values A1, A2, . . . , AN for different points y in R3. The random medium is
assumed to be stationary, i.e., for any finite choice of points y1,y2, . . . ,yk and any
vector h, the distribution of the random tensor

A(y1 + h, ω), A(y2 + h, ω), . . . , A(yk + h, ω)(1.1)

does not depend on h. The finite size composite specimen occupies the bounded
domain D, and points inside it are denoted by x. The dielectric tensor for a composite
with a random microstructure of characteristic length scale ε relative to the size of D
is given by

Aε(x, ω) = A
(x

ε
, ω

)
.(1.2)

The potential inside the composite is denoted by φε(x, ω). For a prescribed charge
distribution f = f(x) and prescribed values of the electric potential on the boundary
of the domain D given by φε(x, ω) = φ0(x), the potential is the solution of

−div(Aε(x, ω)∇φε(x, ω)) = f(1.3)

in D. Here (1.3) holds in the sense of distributions. The associated electric field
Eε(x, ω) = −∇φε(x, ω) is not necessarily a stationary random field; this is due to the
finite size of the domain D and the prescribed charge distribution.

Failure initiation criteria are often given in terms of a critical field strength such
that if a significant portion of the sample has field strength above this value, then
the failure process is initiated [7]. Motivated by this observation, we focus on the
subset of the composite where |Eε|2 exceeds the value t > 0, and we denote it by
Sε
t (ω). Consider any cube C0 inside the composite. It is assumed here that the

boundary of the cube does not intersect the boundary of the specimen. The field
distribution function λε(t, C0, ω) gives the volume of the intersection of Sε

t (ω) with
C0, i.e., λε(t, C0, ω) = |Sε

t (ω) ∩ C0|. Here |S| denotes the volume of the set S.
Division of λε(t, C0, ω) by the volume of the cube gives the function P ε(t, C0, ω).
Here P ε(t, C0, ω) gives the proportion of the cube experiencing field strength greater
than t. One also defines the electric field distribution inside the part of the ith phase
contained in the cube C0. The volume of the set in the ith phase contained in C0

where |Eε|2 exceeds the value t > 0 is denoted by λε
i (t, C0, ω). The set occupied by the

ith phase is denoted by Sε
i (ω). Analogously P ε

i (t, C0, ω) ≡ λε
i (t, C0, ω)/|Sε

i (ω) ∩ C0|
gives the proportion if the ith phase contained in C0 with field strength greater than t.

In this paper we obtain bounds on P ε(t, C0, ω) and P ε
i (t, C0, ω) in the limit of

vanishing ε. These bounds are expressed in terms of suitable macroscopic quantities
dubbed macrofield modulation functions. To illustrate the ideas, one applies the
Chebyshev inequality to obtain the bound on P ε(t, C0, ω) given by

P ε(t, C0, ω) ≤ t−p 1

|C0|

∫
C0

|Eε(x, ω)|2p dx.(1.4)

In section 2 we state the homogenized version of (1.4) given by

lim
ε→0

P ε(t, C0, ω) ≤ t−pAp(C0).(1.5)

Here Ap(C0) is independent of ω and is described in terms of the macrofield modu-
lation functions. The macrofield modulation of order p is the Lp norm of the square
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EXTREME FIELD VALUES IN RANDOM MICROSTRUCTURE 477

of the electric field intensity for the associated corrector problem (2.2) posed on
the infinite random medium when the random medium is subjected to an imposed
macroscopic electric field; see (2.9). Proposition 2.1 explicitly shows how integra-
bility of order p at the level of the corrector problem contributes to the t−p order
decay of limε→0 P

ε(t, C0, ω). Similarly, Proposition 2.3 shows how L∞ regularity of
the square of the electric field intensity for the associated corrector problem allows
limε→0 P

ε(t, C0, ω) to vanish above a critical value of t. For this case we can pass to a
subsequence, if necessary, to derive a pointwise bound on the local electric field inten-
sity for almost every realization of the random microstructure when the scale of the
microstructure is sufficiently small; see Proposition 2.4. When the macrofield mod-
ulation function has bounded mean oscillation, an explicit upper bound is obtained
that is exponential in −t and is given in terms of the BMO norm of the macrofield
modulation function; see Proposition 2.5. The corrector problem that is used to de-
fine the macrofield modulation functions is well known and naturally arises in the
definition of the effective dielectric tensor [1, 10, 17, 18].

It is pointed out that the main results given by Propositions 2.1 through 2.6
are strong limit theorems in that they hold for almost all realizations of the random
medium. Propositions 2.1 through 2.6 are a direct consequence of the homogenization
constraints given in Proposition 3.1. These constraints relate the macrofield modula-
tion functions to the distribution of states for the square of the electric field intensity.
This type of constraint is introduced in [11, 14] for the case of graded locally periodic
microstructures and in the context of G convergence for multiphase linearly elastic
composites. The results reported here apply to the mathematically identical situations
appearing in the contexts of thermal conductivity and DC electric conductivity.

The paper is organized as follows: In section 2 the macrofield modulation func-
tions are introduced and the main results are presented. The homogenization con-
straint is introduced and derived in section 3. The homogenized version of Chebyshev’s
inequality is established in section 4. The bounds on the support of limε→0P

ε
i (t, C0, ω)

and limε→0P
ε(t, C0, ω) are obtained in section 5. These are given in terms of the L∞

norm of the macrofield modulation functions. The pointwise upper bounds are de-
rived in section 6. The exponentially decaying bound on limε→0P

ε(t, C0, ω) is derived
in section 7. In section 8 we consider a highly oscillatory, randomly layered dielectric
occupying an L-shaped domain. The dielectric is subjected to a prescribed charge
density and the electric potential satisfies homogeneous Dirichlet boundary condi-
tions. The macrofield modulation functions together with the results of section 2 are
applied to assess the distribution of the electric field intensity inside the domain.

2. The macrofield modulation functions and main results. To introduce
the macrofield modulation functions, we consider a random composite of infinite ex-
tent. For stationary random media it is shown in [17] that one can regard the dielectric
tensor A(y, ω) as the realization of a random function Ã with respect to a three-
dimensional dynamical system T acting on a suitable sample space; see also [2] for a
more recent discussion. In view of this let (Ω,F ,P) be a probability space. For a given
partition of Ω into N measurable subsets Ω1,Ω2, . . . ,ΩN we introduce the indicator
functions χ̃i taking the values 1 in Ωi and zero outside and set Ã(ω) =

∑N
i=1 Aiχ̃i(ω).

Following [5, 10, 17] we regard the dielectric A(y, ω) as a realization of Ã with respect
to a three-dimensional dynamical system T on Ω, i.e., A(y, ω) = Ã(T (y)ω) for (y, ω)
in R3×Ω. Here the family of mappings T = T (y), y in R3 from Ω into Ω, is one to one
and preserves the measure P on Ω; i.e., for any A in F one has P(T (−y)A) = P(A).
The family of transforms is a group with T (0)ω = ω, T (y + h) = T (y)T (h), and
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478 ROBERT LIPTON

for any P measurable function f̃ on Ω, the function f̃(T (y)ω) defined on R3 × Ω is
also measurable with respect to L×F , where L stands for the σ-algebra of Lebesgue-
measurable subsets of R3. Lastly, it is assumed that the dynamical system is ergodic.

Let e1, e2, e3 represent unit vectors along the coordinate directions in R3. A
constant electric field ek is imposed on the infinite random medium. The dielectric
response in the composite is given by an electric field that can be decomposed into
the imposed electric field ek and a stationary random fluctuation −∇ϕk(y, ω) =
Gk(T (y)ω), where Gk is in L2(Ω,P) with zero mean, i.e., 〈Gk〉 =

∫
Ω

GkdP = 0; see
[5, 10, 17, 8]. From the Birkhoff ergodic theorem it follows that for any sequence of
cubes Q(r) of side length 2r and volume |Q(r)|,

lim
r→∞

1

|Q(r)|

∫
Q(r)

(−∇ϕk(y, ω)) dy = 〈Gk〉 = 0.(2.1)

The fluctuation solves

−div(A(y, ω)(∇ϕk(y, ω) + ek)) = 0(2.2)

for y in R3. For an imposed constant electric field of the general form E = (E1e
1 +

E2e
2 + E3e

3), the stationary random fluctuation is obtained by superposition and

is given by −∇ϕ(y, ω) =
∑3

k=1 EkG
k(T (y)ω). For future reference we introduce

the matrix with column vectors Gk given by G̃(ω) = (G1(ω),G2(ω),G3(ω)). Then
−∇ϕ(y, ω) = G̃(T (y)ω)E and E(y, ω) = (I + G̃(T (y)ω))E. The dielectric displace-
ment is a stationary random field, and its mean is given by

〈D〉 =

∫
Ω

Ã(ω)(I + G̃(ω))E dP(ω) = lim
r→∞

1

|Q(r)|

∫
Q(r)

A(y, ω)E(y, ω) dy.(2.3)

The effective dielectric tensor AE provides the linear relation between the imposed
electric field E and the mean dielectric displacement 〈D〉, i.e., 〈D〉 = AEE; see
[5, 10, 17, 8].

When considering failure initiation it is important to assess the magnitude of the
local electric field inside the random medium arising from the imposed electric field E.
Here one is interested in the probability that the square of the electric field intensity
|E|2 in the ith phase exceeds a nominal value t. For the stationary random case this
probability is the same for every point and is given by θt,i = P(χ̃i(ω)|(I+G̃(ω))E|2 >
t). Other quantities that are useful for local field assessment are given by the Lp norms,
1 ≤ p ≤ ∞. The Lp(Ω) norm of a P measurable function g̃ is denoted by ‖g̃‖Lp(Ω).
Since T (y) preserves the measure P on Ω, it follows that

‖χi(y, ω)|E(y, ω)|2‖Lp(Ω) = ‖χ̃i(ω)|(I + G̃(ω))E|2‖Lp(Ω) for every y in R3.(2.4)

Motivated by these considerations, we introduce moments of the local electric field of
order p.

Definition: Moments of the local electric field.

f i
p(E) = ‖χ̃i(ω)|(I + G̃(ω))E|2‖Lp(Ω) =

(∫
Ω

χ̃i(ω)|(I + G̃(ω))E|2p dP(ω)

)1/p

(2.5)

for 1 ≤ p ≤ ∞.
Moments of the electric field have been calculated for two-dimensional random

dispersions of disk-, needle-, and square-shaped inclusions in [4].

D
ow

nl
oa

de
d 

01
/1

0/
20

 to
 1

67
.9

6.
14

5.
17

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



EXTREME FIELD VALUES IN RANDOM MICROSTRUCTURE 479

It is pointed out that the electric field generated by a constant imposed electric
field is self-similar under a rescaling of the infinite random medium. Indeed, set εk =
1/k and rescale the material properties by Aεk(y, ω) = A(y/εk, ω). It is easily checked
that the electric field also rescales as Eεk(y, ω) = E(y/εk, ω). Thus the analysis of
electric field distribution for the εk scale microstructure reduces to an analysis for the
unrescaled random media. However, this symmetry is broken for generic situations
when the specimen is finite in extent and the loading is not uniform throughout the
sample. Because of this the electric field in the composite is not obtained directly
through an analysis of the electric field in an infinite random medium. Instead, it is
shown here that a suitable multiscale analysis using macrofield modulation functions
provides rigorous bounds on the field distributions P ε(t, C0, ω) and P ε

i (t, C0, ω) for
almost every realization in the limit of vanishing ε.

Consider a finite size specimen D filled with random composite with characteristic
length scale εk = 1/k. Here the composite is described by Aεk(x, ω) = Ã(T (x/εk)ω),
and the electric potential φεk(x, ω) solves the boundary value problem described
in the introduction with equilibrium condition given by (1.3). The electric field
is given by Eεk = −∇(φεk). The multiscale analysis proceeds in two steps. The
first step is the up scaling or homogenization step where the macroscopic electric
field is determined. From the theory of random homogenization, the fields Eεk(x, ω)
and Dεk(x, ω) = Aεk(x, ω)Eεk(x, ω) converge to the deterministic macroscopic fields

E(x)
M

and DM (x) as εk goes to zero for almost every ω; see [10, 17]. Here the
convergence of the sequences of electric and displacement fields is given by weak
convergence in L2(D)3. The deterministic macroscopic potential φM (x) satisfies the
boundary condition φM (x) = φ0(x). The macroscopic dielectric displacement satisfies
the equilibrium equation

divDM = f(2.6)

and EM = −∇φM . The displacement and electric field are related through the
homogenized constitutive law

DM (x) = AEEM (x).(2.7)

The second step is a down scaling step and gives the interaction between the macro-
scopic electric field EM (x) and the microstructure. For each x, the microscopic di-
electric response is given by

E(x,y, ω) = (I + G̃(T (y)ω))EM (x).(2.8)

The relevant interaction is described by the macrofield modulation function f i
p(E

M(x))
given by the following definition.

Definition: Macrofield modulation function.

f i
p(E

M (x)) = ‖χ̃i(ω)|(I + G̃(ω))EM (x)|2‖Lp(Ω)(2.9)

for 1 ≤ p ≤ ∞. The macrofield modulation function f i
p(E

M (x)) provides a measure of

the amplification or diminution of EM (x) by the random medium. Explicit formulas
for the macrofield modulation functions for randomly layered two-phase dielectrics
are given in section 8.

Consider any cube C0 inside the composite. The L1 norm of a function g(x)
over the cube C0 is denoted by ‖g‖L1(C0). In what follows, it is always assumed that

D
ow

nl
oa

de
d 

01
/1

0/
20

 to
 1

67
.9

6.
14

5.
17

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



480 ROBERT LIPTON

θi =
∫
Ω
χ̃i(ω) dP > 0, and from ergodicity the volume occupied by the ith phase in the

cube C0 tends to the nonzero limit limεk→0

∫
C0

χ̃i(T (x/εk)ω) dx = θi|C0| as εk tends

to zero. Passing to a subsequence, if necessary, we consider limεk→0P
εk
i (t, C0, ω).

If it is known that ‖|f i
p(E

M (x))|p‖L1(C0) < ∞ for some p, then the following
proposition shows that limεk→0P

εk
i (t, C0, ω) decays on the order of t−p.

Proposition 2.1 (homogenization of Chebyshev’s inequality). Given that

‖|f i
p(E

M (x))|p‖L1(C0) < ∞

for some p with 1 ≤ p < ∞, then for almost every realization ω one has

limεk→0P
εk
i (t, C0, ω) ≤ t−p 1

θi|C0|
‖|f i

p(E
M (x))|p‖L1(C0)

(2.10)

= t−p 1

θi|C0|

∫
C0

∫
Ω

χ̃i(ω)|(I + G̃(ω))EM (x)|2p dP(ω) dx.

If ‖|f i
p(E

M (x))|p‖L1(C0) < ∞ for all i = 1, 2, . . . , N, then

limεk→0P
εk(t, C0, ω) ≤ t−p 1

|C0|

∫
C0

∫
Ω

|(I + G̃(ω))EM (x)|2p dP(ω) dx(2.11)

for almost every realization ω.
It is clear that the coefficients of t−p in (2.10) and (2.11) depend upon the Dirichlet

data φ0, charge density f, and the domain D through the solution of the homogenized
problem (2.6). The proof of Proposition 2.1 is given in section 4.

The L∞ norm of a function g(x) over the cube C0 is denoted by ‖g‖L∞(C0). A
characterization of the set of parameters t where limεk→0P

εk
i (t, C0, ω) vanishes for

almost every realization is given in the following proposition.
Proposition 2.2. If t > ‖f i

∞(EM (x))‖L∞(C0), then limεk→0P
εk
i (t, C0, ω) = 0

for almost every ω in Ω
From the proposition it is evident that if t > ‖f i

∞(EM (x))‖L∞(C0), then the
volume of the subsets in the ith phase for which |Eεk(x, ω)|2 > t vanishes as εk tends
to zero with probability one. The proof of Proposition 2.2 is given in section 5.

We introduce the macrostress modulation M(EM (x)) given by

M(EM (x)) = max
i=1,...,N

f i
∞(EM (x))(2.12)

and characterize limεk→0P
εk(t, C0, ω) in a way analogous to Proposition 2.2. This is

stated in the following proposition.
Proposition 2.3. If t > ‖M(EM (x))‖L∞(C0), then limεk→0P

εk(t, C0, ω) = 0 for
almost every realization.

For random microstructure with oscillation on a sufficiently small scale, it is
found that a pointwise bound on the macrofield modulation function delivers a point-
wise bound on the actual electric field intensity for almost every realization of the
microstructure.

Proposition 2.4 (pointwise bounds on the electric field intensity). Suppose that

t > M(EM (x))(2.13)

on C0. Then one can pass to a subsequence {εk′}∞k′=1 if necessary to find that there
is a critical ε0 such that for every εk′ < ε0,

|Eεk′ (x, ω)|2 ≤ t(2.14)
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EXTREME FIELD VALUES IN RANDOM MICROSTRUCTURE 481

for almost every x in C0 and for almost every realization ω. Here ε0 can depend upon
x and ω.

The proof of Proposition 2.4 is given in section 6.
Last, we give conditions for which limεk→0P

εk(t, C0, ω) decreases exponentially
with t. To do this we introduce the BMO norm of M(EM (x)) over the cube C0 given
by

‖M‖BMO = sup
C⊂C0

(
1

|C|

∫
C

|M(EM (x)) −MC | dx
)
,(2.15)

where MC is the average of M(EM (x)) over C and the supremum is taken over all
subcubes C of C0. The BMO norm and the space of functions of bounded mean
oscillation were introduced by John and Nirenberg [6]. The space of functions with
bounded L∞ norm are a subspace of the functions with bounded BMO norm since
‖M(EM )‖BMO ≤ c‖M(EM )‖L∞(C0), where c is a constant depending on C0.

For any positive number α between zero and one, we define the constant C(α) by

C(α) =
α| lnα|

8‖M‖BMO

.(2.16)

With the average of M(EM (x)) over the cube C0 denoted by MC0
, the bound on

limεk→0 P
εk(t, C0, ω) is given in the following proposition.

Proposition 2.5. If t > 8‖M‖BMOα
−1 + MC0 , then

limεk→0P
εk(t, C0, ω) ≤ α−1e−C(α)×(t−MC0

)(2.17)

for almost every realization.
For t fixed the proposition shows that P εk(t, C0, ω) approaches or drops below

α−1e−C(α)×(t−MC0
)

for εk sufficiently small for almost every realization. It also shows that the upper
bound is exponentially decreasing for large t. Optimization over α (see section 7)
provides the tighter upper bound given by the following proposition.

Proposition 2.6. If t > 8‖M‖BMO + MC0 , then for almost every realization of
the random medium

limεk→0P
εk(t, C0, ω) ≤ (α(t))−1e× e[−α(t)(t−MC0

)/(8‖M‖BMO)],(2.18)

where the factor α(t) lies in the interval e−1 < α(t) < 1 and is the root of the equation

κ−1 − α(1 + lnα) = 0,(2.19)

with κ = (t−MC0)/(8‖M‖BMO).
It is pointed out that if the macroscopic electric field EM is constant inside C0,

then ‖M‖BMO = 0, MC0 = M(EM ) = ‖M(EM )‖L∞(C0), and Propositions 2.3, 2.5,
and 2.6 reduce to the observation that if t > M(EM ), then limεk→0P

εk(t, C0, ω) = 0
for almost all ω.

Propositions 2.1 through 2.6 provide the opportunity to recover information on the
behavior of the electric field intensity |Eε(x, ω)| inside the random microstructure from
knowledge of the behavior of the macrofield modulation functions. An application is
given in section 8 where the electric field distribution inside an L-shaped domain
containing a highly oscillatory random laminate is analyzed.
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482 ROBERT LIPTON

3. Homogenization constraints. The homogenization constraints are moti-
vated by considering the case of a random composite of infinite extent. For the
p = ∞ case the homogenization constraint follows immediately from the definition of
f i
∞(E). Indeed, it is clear from the definition of the L∞ norm that t ≥ f i

∞(E) implies
that θt,i = 0, and equivalently, if θt,i > 0, it follows that f i

∞(E) > t. This delivers the
homogenization constraints given by

θt,i(f
i
∞(E) − t) ≥ 0.(3.1)

For 1 ≤ p < ∞, Chebyshev’s inequality implies

t−p(f i
p(E))p ≥ θt,i.(3.2)

Inequalities (3.1) and (3.2) are the specialization of the homogenization constraints
to stationary random composites of infinite extent. In the general context the macro-
scopic electric field is not uniform and the composite specimen has finite size. For
general specimen shapes and nonuniform loading, the constraints analogous to (3.1)
and (3.2) are given in terms of f i

∞(EM (x)) and f i
p(E

M (x)). In order to complete
the description of the homogenization constraint, a suitable generalization of θt,i is
needed. For this case, one considers a realization of the random composite Aεk(x, ω)
and the set in the ith phase where the square of the electric field intensity |Eεk(x, ω)|2
exceeds t is denoted by Sεk

t,i(ω). Consider any subdomain Q of the specimen such that
the boundary of Q does not intersect the boundary of the specimen. The distribution
function λεk

i (t, Q, ω) is defined by λεk
i (t, Q, ω) = |Sεk

t,i(ω)∩Q|. The indicator function
for the set Sεk

t,i(ω) is written χεk
t,i(x, ω) taking the value 1 in Sεk

t,i(ω) and 0 outside and

we write λεk
i (t, Q, ω) =

∫
Q
χεk
t,idx. From the theory of weak convergence there exists a

(Lebesgue measurable) density θt,i(x, ω) taking values in the interval [0, 1] such that
(on passage to a subsequence if necessary) limk→∞ λεk

i (t, Q, ω) =
∫
Q
θt,i(x, ω)dx. The

density θt,i(x, ω) is the local distribution of states of the square of the electric field
intensity |Eεk(x, ω)|2 in the ith phase as εk goes to zero. Here, the random fields
Eεk(x, ω) and θt,i(x, ω) can no longer be regarded as stationary; this is due to the
finite size of the domain and nonuniform charge distribution within the dielectric.
However, for almost every realization one has the homogenization constraints given
in the following proposition.

Proposition 3.1 (homogenization constraints). For almost every point x in Q
and almost every realization ω in Ω, one has

θt,i(x, ω)(f i
∞(EM (x)) − t) ≥ 0, i = 1, . . . , N,(3.3)

and for 1/q + 1/p = 1,

θ
1/q
t,i (x, ω)f i

p(E
M (x)) ≥ tθt,i(x, ω), i = 1, . . . , N.(3.4)

It is clear that (3.3) and (3.4) are the extensions of (3.1) and (3.2) to situations
where the macroscopic electric field is no longer uniform.

Proof. For a given realization ω, it follows from the definition of the set Sεk
t,i(ω)

that

χεk
t,i(x, ω)|Eεk(x, ω)|2 − tχεk

t,i(x, ω) > 0.(3.5)

Multiplying (3.5) by any nonnegative test function p(x) and integrating over D gives∫
D
p(x)(χεk

t,i(x, ω)|Eεk(x, ω)|2 − tχεk
t,i(x, ω)) dx > 0.(3.6)
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EXTREME FIELD VALUES IN RANDOM MICROSTRUCTURE 483

Taking limits and passing to subsequences if necessary gives

lim
εk→0

∫
D
p(x)χεk

t,i(x, ω)|Eεk(x, ω)|2 dx ≥ t

∫
D
p(x)θt,i(x, ω) dx.(3.7)

We will use the following lemma.
Lemma 3.2.∫

D
p(x)f i

∞(EM (x))θt,i(x, ω) dx ≥ lim
εk→0

∫
D
p(x)χεk

t,i(x, ω)|Eεk(x, ω)|2 dx,(3.8)

and for 1/q + 1/p = 1,∫
D
p(x)f i

p(E
M (x))θ

1/q
t,i (x, ω) dx ≥ lim

εk→0

∫
D
p(x)χεk

t,i(x, ω)|Eεk(x, ω)|2 dx(3.9)

for all nonnegative p(x) in C∞
0 (D) and for almost every ω.

Applying the inequality (3.7) together with Lemma 3.2 delivers∫
D
p(x)f i

∞(EM (x))θt,i(x, ω) dx ≥ t

∫
D
p(x)θt,i(x, ω) dx(3.10)

and ∫
D
p(x)f i

p(E
M (x))θ

1/q
t,i (x, ω) dx ≥ t

∫
D
p(x)θt,i(x, ω) dx(3.11)

for almost every ω. The proposition now follows since (3.10) and (3.11) hold for every
nonnegative test function.

Proof of Lemma 3.2. We write

Aεk(x, ω) = Aεk(A1, A2, . . . , AN ,x, ω) =

N∑
�=1

χ̃�(T (x/εk)ω)A�.(3.12)

We introduce the N + 1 phase composite identical to the previous except that in
Sεk
t,i(ω) it has dielectric constant PN+1. The piecewise constant dielectric tensor for

this composite is given by

Âεk(x, ω) = Âεk(A1, A2, . . . , AN , PN+1,x, ω)

=
N∑
�=1
� �=i

χ̃�(T (x/εk)ω)A�(3.13)

+ χ̃i(T (x/εk)ω)(1 − χεk
t,i(x, ω))Ai + χ̃i(T (x/εk)ω)χεk

t,i(x, ω)PN+1.

For PN+1 in a neighborhood of Ai, we invoke the compactness property of G-conver-
gence with respect to the sequence {Âεk(A1, A2, . . . , AN , PN+1,x, ω)}∞k=1 [19, 16] to
assert the existence of a G-converging subsequence also denoted by

{Âεk(A1, A2, . . . , AN , PN+1,x, ω)}∞k=1

and a G-limit denoted by ÂE(A1, A2, . . . , AN , PN+1,x, ω). The partial derivatives of
ÂE(A1, A2, . . . , AN , PN+1,x, ω) with respect to each element of PN+1 evaluated at
PN+1 = Ai are given by [11, 12, 13]:

∇N+1
mn ÂE

op(A1, A2, . . . , AN , Ai,x, ω)
(3.14)

= lim
r→0

lim
εk→0

(
1

|Q(x, r)|

∫
Q(x,r)

χεk
t,i(y, ω)(∂mwk,r

o + eom)(∂nw
k,r
p + epn) dy

)
.
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484 ROBERT LIPTON

Here Q(x, r) is a cube of side length 2r inside D centered at x with volume given
by |Q(x, r)|, and the functions wk,r

p vanish on the boundary of the cube and are the
solutions of

−div(Aεk(y, ω)(∇wk,r
p (y) + ep)) = 0, p = 1, 2, 3,(3.15)

for y in Q(x, r). From [11, 12, 13] one has for every test function p vanishing on the
boundary of D that

lim
εk→0

∫
D
p(x)χεk

t,i(x, ω)|Eεk(x, ω)|2 dx
(3.16)

=

∫
D
p(x)

(
3∑

m=1

∇N+1
mm ÂE(A1, A2, . . . , AN , Ai,x, ω)

)
EM (x) · EM (x) dx.

Here (
3∑

m=1

∇N+1
mm ÂE(A1, A2, . . . , AN , Ai,x, ω)

)
EM (x) · EM (x)

=
∑
op

(
lim
r→0

lim
εk→0

(
1

|Q(x, r)|

∫
Q(x,r)

χεk
t,i(y, ω)(∇wk,r

o + eo)(3.17)

· (∇wk,r
p + ep) dy

)
EM

o (x)EM
p (x)

)
.

From the appendix of [5] it follows, on passing to a subsequence, if necessary, that for
every r > 0

lim
εk→0

∫
Q(x,r)

|(−∇wk,r
p (y)) − Gp(T (y/εk)ω)|2 dy = 0(3.18)

for almost every ω. From this we deduce that for a denumerable sequence {rj}∞j=1,
rj → 0

(
3∑

m=1

∇N+1
mm ÂE(A1, A2, . . . , AN , Ai,x, ω)

)
EM (x) · EM (x)

(3.19)

= lim
rj→0

lim
εk→0

(
1

|Q(x, rj)|

∫
Q(x,rj)

χεk
t,i(y, ω)|(I + G̃(T (y/εk)ω))EM (x)|2 dy

)

for almost every ω. Applying the Hölder inequality gives∫
Q(x,rj)

χεk
t,i(y, ω)|(I + G̃(T (y/εk)ω))EM (x)|2 dy

≤
∫
Q(x,rj)

χεk
t,i(y, ω) dy‖χ̃i(T (y)ω)|(I + G̃(T (y)ω))EM (x)|2‖L∞(R3)(3.20)

≤
∫
Q(x,rj)

χεk
t,i(y, ω) dy‖χ̃i(ω)|(I + G̃(ω))EM (x)|2‖L∞(Ω).
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EXTREME FIELD VALUES IN RANDOM MICROSTRUCTURE 485

The last inequality in (3.20) follows from a straightforward argument given in the
appendix. Noting that

lim
rj→0

lim
εk→0

1

|Q(x, rj)|

∫
Q(x,rj)

χεk
t,i(y, ω) dy = θt,i(x, ω)(3.21)

for almost all x and applying (3.20) to (3.19), we arrive at the estimate(
3∑

m=1

∇N+1
mm ÂE(A1, A2, . . . , AN , Ai,x, ω)

)
EM (x) · EM (x)

(3.22)
≤ θt,i(x, ω)f i

∞(EM (x))

for almost every ω in Ω, and the proof of (3.8) of Lemma 3.2 is complete. To prove
(3.9) we return to (3.19) and apply the Hölder inequality with 1/p+1/q = 1 to obtain

(3.23)

lim
εk→0

1

|Q(x, rj)|

∫
Q(x,rj)

χεk
t,i(y, ω)|(I + G̃(T (y/εk)ω))EM (x)|2 dy

≤ lim
εk→0

(
1

|Q(x, rj)|

∫
Q(x,rj)

χεk
t,i(y, ω) dy

)1/q

× lim
εk→0

(
1

|Q(x, rj)|

∫
Q(x,rj)

χ̃i(T (y/εk)ω)|(I + G̃(T (y/εk)ω))EM (x)|2pdx
)1/p

.

From the Birkhoff ergodic theorem it follows that

(3.24)

f i
p(E

M (x))

= lim
εk→0

(
1

|Q(x, rj)|

∫
Q(x,rj)

χ̃i(T (y/εk)ω)|(I + G̃(T (y/εk)ω))EM (x)|2pdx
)1/p

,

and the proof of (3.9) is complete.

4. Homogenization of Chebyshev’s inequality. In this section we estab-
lish Proposition 2.1. We start by providing the relationship between the limits
limεk→0P

εk
i (t, C0, ω), limεk→0P

εk(t, C0, ω) and the distribution of states for the square
of the electric field intensity in the ith phase. The volume of the subset of the ith
phase contained in C0 where the equivalent stress exceeds t is given by λεk

i (t, C0, ω) =∫
C0

χεk
t,i(x, ω)dx. Passing to a subsequence if necessary, the theory of weak conver-

gence delivers the distribution of states θt,i(x, ω) for which limεk→0 λ
εk
i (t, C0, ω) =∫

C0
θt,i(x, ω)dx. For fixed εk the volume of the ith phase in the cube C0 is denoted

by V εk
i and P εk

i (t, C0, ω) = λεk
i (t, C0, ω)/V εk

i . From ergodicity, limεk→0 V
εk
i = θi|C0|.

It is clear that

limεk→0P
εk
i (t, C0, ω) =

(
1

θi|C0|

)∫
C0

θt,i(x, ω) dx.(4.1)

Set θt(x, ω) =
∑N

i=1 θt,i(x, ω); then one has

limεk→0P
εk(t, C0, ω) = (1/|C0|)

∫
C0

θt(x, ω) dx.(4.2)
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486 ROBERT LIPTON

It follows easily from the homogenization constraint (3.4) that

θt,i(x, ω) ≤ t−p|f i
p(E

M (x))|p, i = 1, . . . , N.(4.3)

Taking averages of both sides gives

limεk→0P
εk
i (t, C0, ω) ≤ t−p

(
1

θi|C0|

)∫
C0

|f i
p(E

M (x))|p dx,(4.4)

and (2.10) of Proposition 2.1 is proved. The inequality (2.11) of Proposition 2.1 follows
immediately upon summation of the left and right sides of (4.3) over i = 1, . . . , N and
averaging both sides.

5. Bounds on the support set of the electric field intensity distribu-
tion function. This section contains the proofs of Propositions 2.2 and 2.3. The
homogenization constraint (3.3) is used to prove Proposition 2.2. Integration of (3.3)
gives ∫

C0

θt,i(x, ω)f i(EM (x)) dx − t

∫
C0

θt,i(x, ω) dx ≥ 0, i = 1, . . . , N.(5.1)

Application of Hölder’s inequality to the first term and division by θi|C0| gives

lim
εk→0

P εk
i (t, C0, ω)(‖f i(EM )‖L∞(C0) − t) ≥ 0, i = 1, . . . , N,(5.2)

and Proposition 2.2 follows.
To prove Proposition 2.3 we add the constraints (5.1) to get

N∑
i=1

(∫
C0

θt,i(x, ω)f i(EM (x)) dx

)
− t

∫
C0

θt(x, ω) dx ≥ 0.(5.3)

Noting that M(EM (x)) ≥ f i(EM (x)) gives∫
C0

θt(x, ω)M(EM (x)) dx − t

∫
C0

θt(x, ω) dx ≥ 0.(5.4)

Application of Hölder’s inequality to the first term and division by |C0| gives

lim
εk→0

P εk(t, C0, ω)(‖M(EM (x))‖L∞(C0) − t) ≥ 0,(5.5)

and Proposition 2.3 follows.

6. Pointwise bounds on the electric field intensity. In this section we give
the proof of Proposition 2.4. From the hypothesis of Propositions 2.4 and 2.3 it
follows that limk→∞ |Sεk

t (ω)∩C0| = 0. We choose a subsequence {εk′}∞k′=1 such that

|Sεk′
t (ω) ∩ C0| < 2−k′

. Then if x doesn’t belong to ∪∞
k′≥K̃

S
εk′
t (ω) ∩ C0, one has that

|Eεk′ |2 ≤ t for every k′ > K̃. Hence for any x not in A = ∩∞
K=1 ∪∞

k′≥K S
εk′
t (ω) ∩ C0

there is an index K for which |Eεk′ |2 ≤ t for every k′ > K. But

|A| ≤
∣∣∣∪∞

k′≥K̃
S
εk′
t (ω) ∩ C0

∣∣∣ ≤ ∞∑
k′=K̃

|Sεk′
t (ω) ∩ C0| ≤ 2−K̃+1.

Hence |A| = 0. Thus for almost every x in C0 there is a finite index K (that may
depend upon x and ω) for which |Eεk′ |2 ≤ t for every k′ > K, and the proposition
follows.
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EXTREME FIELD VALUES IN RANDOM MICROSTRUCTURE 487

7. Upper bounds on the stress distribution function. In this section
Propositions 2.5 and 2.6 are derived. For a cube C0 contained inside the compos-
ite, the set of points where M(EM (x)) ≥ t is denoted by {x in C0; M(EM (x)) ≥ t}.
We start by establishing the inequality

lim
εk→0

P εk(t, C0, ω) ≤ |{x in C0; M(EM (x)) ≥ t}|
|C0|

.(7.1)

Adding the homogenization constraints gives

θt(x, ω)(M(EM (x)) − t) ≥ 0.(7.2)

Thus from (7.2) it is evident that at almost every point for which θt(x, ω) > 0, one
has that M(EM (x)) ≥ t. The set of points in C0 for which θt(x, ω) > 0 is denoted by
{x in C0; θt(x, ω) > 0}, and it is clear that

|{x in C0; θt(x, ω) > 0}| ≤ |{x in C0; M(EM (x)) ≥ t}|.(7.3)

Since 0 ≤ θt(x, ω) ≤ 1, one has the estimate∫
C0

θt(x, ω) dx ≤ |{x in C0; θt(x, ω) > 0}|,(7.4)

and (7.1) follows from (7.3).
We will apply the John–Nirenberg theorem [6] to estimate the right-hand side of

(7.1). To do this we show first that

|{x in C0; M(EM (x)) ≥ t}| ≤ |{x in C0; |M(EM (x)) −MC0 | ≥ t−MC0}|.(7.5)

To see this, note that M(EM (x)) ≤ |M(EM (x)) −MC0 | + MC0 , so

{x in C0; M(EM (x)) ≥ t} ⊂ {x in C0; |M(EM (x)) −MC0 | ≥ t−MC0},(7.6)

and (7.5) follows. Application of the John–Nirenberg theorem gives

|{x in C0; |M(EM (x))−MC0
|≥ s}|

|C0|
≤
{

1 for 0<s≤ 8‖M‖BMOα
−1,

α−1e[−(C(α)×(s))] for 8‖M‖BMOα
−1 < s.

(7.7)

Proposition 2.5 follows immediately from the change of variables s = t−MC0
and the

inequalities (7.1), (7.5), and (7.7). The function obtained by the change of variables
s = t−MC0

in (7.7) is denoted by Pα(t, C0), and

Pα(t, C0) =

{
1 for 0 < t−MC0 ≤ 8‖M‖BMOα

−1,

α−1e[−(C(α)×(t−MC0
))] for 8‖M‖BMOα

−1 < t−MC0 .
(7.8)

It is evident from the estimates that limεk→0P
εk(t, C0, ω) ≤ Pα(t, C0) for MC0

< t.
Tighter upper bounds are given by optimizing over α, i.e.,

limεk→0P
εk(t, C0, ω) ≤ U(t, C0) = inf

0<α<1
Pα(t, C0).(7.9)
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488 ROBERT LIPTON

Here U(t, C0) is continuous and decreasing and is given by

U(t, C0) =

{
1 for 0 < t−MC0 ≤ 8‖M‖BMO,

(α(t))−1e× e[−α(t)(t−MC0
)/(8‖M‖BMO)] for 8‖M‖BMO + MC0

< t.

(7.10)

The factor α(t) lies in the interval e−1 < α(t) < 1 and is the root of the equation

κ−1 − α(1 + lnα) = 0,(7.11)

where κ = (t − MC0)/(8‖M‖BMO). Proposition 2.6 now follows immediately from
(7.10).

8. Macrofield modulation functions for random two-phase layered com-
posites. In this section we treat randomly layered media and give an example of how
the macrofield modulation functions are used to assess the field distribution inside a
finite size sample. We start by considering a two-dimensional electrostatic problem
on the plane R2 and derive explicit formulas for the moments of the electric field.
The plane is partitioned into layers of unit thickness parallel to the y2 axis. Each
layer contains an isotropic dielectric material having either dielectric constant α or β
with α < β. The particular value of the dielectric constant in each layer is given by
a Bernoulli process; i.e., a biased coin that takes heads with probability θ and tails
with probability 1 − θ is used to assign the dielectric constant in each layer. Over
each layer the coin is flipped, and if the coin lands heads up, the layer is assigned
the β dielectric; otherwise it assigned the α dielectric. In section 8.1 we calculate
the moments of the electric field directly using the strong law of large numbers. In
section 8.2 we apply these results and use Proposition 2.2 to assess the distribution of
the electric field intensity inside an L-shaped domain filled with a highly oscillatory
random laminate in the presence of a prescribed electric charge density.

8.1. Moments of the electric field for random two-phase layered com-
posites. For a given infinite sequence of biased coin flips, we arrive at a realization
of the random medium. The indicator function ω of the β phase is a function of the
y1 coordinate and takes the value one in the β phase and zero outside it. For con-
venience we choose the origin of the y1 − y2 coordinate system to lie on a two-phase
interface, with the β phase on the left and the α phase on the right. The coordinates
of the interfaces between α and β phases on the positive y1 axis are given by the
sequence {Nn}∞n=1 and N0 = 0. The coordinates of the interfaces between phases on
the negative y1 axis are given by {Nn}−∞

n=−1. Let e1 and e2 be unit vectors pointing
in the directions of the y1 axis and y2 axis, respectively. For imposed electric field
gradients ek, k = 1, 2, the fluctuating part of the electric potential ϕk is continuous
and solves the two-dimensional version of the field problem (2.2) given by

∆ϕk = 0 inside each layer,
(8.1)

β(∂y1ϕ
k
|L + ek1) = α(∂y1

ϕk
|R + ek1) on interfaces.

It is clear from the above that ϕ1 = ϕ1(y1) and ϕ2 = const. In this context the
analogue of (2.1) is given by

lim
r→∞

∫ r

−r
∂y1ϕ

1dy1

2r
= lim

r→∞

ϕ1(r) − ϕ1(−r)

2r
= 0(8.2)
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and ϕk(0) = 0. Clearly ϕ2 = 0, and the potential ϕ1 is a continuous piecewise linear
function of y1, i.e., in each phase ϕ1 is of the form ϕ1(y1) = ay1+b where the constants
a and b change between phases. Application of (8.1), the continuity conditions at two-
phase interfaces, and (8.2) together with the strong law of large numbers shows that
ϕ1(y1) is given a.s. by the following formulas.

For Nn ≤ y1 < Nn+1 and n + 1 even, the potential is given by

ϕ1(y1) = (k2 − 1)y1 + k1(N1 −N2 + N3 −N4 + · · · + Nn),(8.3)

and for n + 1 odd

ϕ1(y1) = (k3 − 1)y1 + k1(N1 −N2 + N3 −N4 + · · · −Nn).(8.4)

For N−(n+1) < y1 ≤ N−n and n + 1 even, the potential is given by

ϕ1(y1) = (k3 − 1)y1 + k1(−N−1 + N−2 −N−3 + N−4 + · · · −N−n),(8.5)

and for n + 1 odd

ϕ1(y1) = (k2 − 1)y1 + k1(−N−1 + N−2 −N−3 + N−4 + · · · + N−n),(8.6)

where the constants k1, k2, and k3 are defined by

k1 =
β − α

α + (β − α)(1 − θ)
,

k2 =
α

α + (β − α)(1 − θ)
,

k3 =
β

α + (β − α)(1 − θ)
.(8.7)

The derivative ∂y1ϕ
1 is given by the following formula:

∂y1ϕ
1 = γα =

θ(β − α)

α + (β − α)(1 − θ)
in the α phase,

∂y1ϕ
1 = γβ =

−(1 − θ)(β − α)

α + (β − α)(1 − θ)
in the β phase.(8.8)

For an imposed constant applied field of the general form E = E1e
1 + E2e

2, the
local electric field E(y, ω) is given by

E(y, ω) = (1 − ω(y1))((1 + γα)E1e
1 + E2e

2) + ω(y1)((1 + γβ)E1e
1 + E2e

2).(8.9)

We average over the plane and apply the strong law of large numbers to obtain the
moments of the local electric field given by

f1
p (E) = lim

r→∞

(
1

2r

∫ r

−r

(1 − ω(y1))|E(y, ω)|2p dy1

)1/p

(8.10)
= (1 − θ)1/p((1 + γα)2E2

1 + E2
2),

f2
p (E) = lim

r→∞

(
1

2r

∫ r

−r

ω(y1)|E(y, ω)|2p dy1

)1/p

(8.11)
= θ1/p((1 + γβ)2E2

1 + E2
2).
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490 ROBERT LIPTON

Fig. 8.1. A realization for θ = 1/3.

The local dielectric constant in the random laminate is given by

A(y, ω) = α(1 − ω(y1)) + βω(y1),(8.12)

and the effective tensor AE is given by

AEE = lim
r→∞

1

2r

∫ r

−r

A(y, ω)E(y, ω) dy1

(8.13)
= (α−1(1 − θ) + β−1θ)−1E1 + (α(1 − θ) + βθ)E2.

The random laminate described above is an example of a symmetric cell material
[15]. A standard construction delivers the probability space (Ω,F ,P) and dynamical
system associated with the symmetric cell material; see [8, 17]. Using this, one rewrites
the averages given in (8.10), (8.11), and (8.13) in terms of the ensemble averages used
to define the moments of the local electric field and effective dielectric constant in
section 2.

8.2. Electric field assessment for a randomly layered dielectric in an
L-shaped domain. In this subsection we apply the theory presented in section 2 to
assess the electric field distribution inside an L-shaped domain containing a highly
oscillatory random laminate with length scale εk = 1/k, k = 1, 2, . . . . Here the L-
shaped domain is taken to have side length one. The dielectric constant for the highly
oscillatory random laminate inside the L-shaped domain is given by

Aεk(x, ω) = A(x1/εk, ω),(8.14)

where A(y, ω) is given by the Bernoulli process (8.12) with θ = 1/3. A realization
of the random laminate with characteristic length scale ε40 is given in Figure 8.1.
Here the subdomain in white is the α dielectric and the subdomain in black is the β
dielectric.

The electric potential φεk(x, ω) is the solution of

−div(Aεk(x, ω)∇φεk(x, ω)) = 10(8.15)
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4 

Fig. 8.2. Distribution of the electric field intensity in the α dielectric.

inside the L-shaped domain and φεk(x, ω) = 0 on the boundary. The associated
electric field is given by Eεk(x, ω) = −∇φεk(x, ω). The goal of this application is
to characterize the distributions limεk→0P

εk
i (t, C0, ω), i = 1, 2. Here C0 can be any

square contained inside the L-shaped domain. To do this we solve numerically for
the macroscopic potential and electric field and construct the macrofield modulation
functions. The macroscopic electric potential φM (x) satisfies the boundary condition
φM (x) = 0 and

−div(AE∇φM (x)) = 10.(8.16)

The macroscopic electric field is given by EM (x) = −∇φM (x). The macrofield mod-
ulation functions are given by

f1
p (EM (x)) = (1 − θ)1/p((1 + γα)2|∂x1φ

M (x)|2 + |∂x2φ
M (x)|2),(8.17)

f2
p (EM (x)) = θ1/p((1 + γβ)2|∂x1φ

M (x)|2 + |∂x2φ
M (x)|2).(8.18)

For the computation we choose α = 2 and β = 10 and restrict our atten-
tion to f1

∞(EM (x)) and f2
∞(EM (x)). To illustrate the ideas, the level curves given

by f1
∞(EM (x)) = 4 are plotted in Figure 8.2. The lined regions indicate where

f1
∞(EM (x)) > 4 and f1

∞(EM (x)) < 4 outside these. For any square C0 that doesn’t
intersect the lined regions, Proposition 2.2 implies that

limεk→0P
εk
1 (t, C0, ω) = 0 for t > 4(8.19)

for almost every realization ω. In this way it is seen that the lined regions provide an
asymptotically exact bound on the set where |Eεk(x, ω)|2 > 4 in the α dielectric.

The level curves given by f2
∞(EM (x)) = 1 are plotted in Figure 8.3. The lined

regions indicate where f2
∞(EM (x)) > 1 and f1

∞(EM (x)) < 1 outside these. For any
square C0 that doesn’t intersect the lined regions, Proposition 2.2 implies that

limεk→0P
εk
2 (t, C0, ω) = 0 for t > 1(8.20)

for almost every realization ω. It is seen as before that the lined regions provide an
asymptotically exact bound on the set where |Eεk(x, ω)|2 > 1 in the β dielectric.
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1 

1 

Fig. 8.3. Distribution of the electric field intensity in the β dielectric.

Appendix. Here we establish the inequality stated in (3.20) given by

‖χ̃i(T (y)ω)|(I + G̃(T (y)ω))EM (x)|2‖L∞(R3)
(A.1)

≤ ‖χ̃i(ω)|(I + G̃(ω))EM (x)|2‖L∞(Ω)

for almost every ω. To establish (A.1) put α = ‖χ̃i(ω)|(I +G̃(ω))EM (x)|2‖L∞(Ω) and

introduce the set G = {ω : χ̃i(ω)|(I + G̃(ω))EM (x)|2 ≤ α}. From Lemma 7.1 of [8]
there exists a set G1 ⊂ G for which P(G1) = 1, and for any fixed ω in G1, one has that
T (y)ω is in G for almost every y in R3, and (A.1) follows.
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